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A new model for turbulent flows in porous media is developed. The spatial- and time fluctuations in this
new model are tied together and treated as a single quantity. This novel treatment of the fluctuations
leads to a natural construction of the k and e type equations for rigid and isotropic porous media in which
all the kinetic energy filtered in the averaging process is modeled. The same terms as those found in the
corresponding equations for clear flow, plus additional terms resulting from the interaction between
solid walls in the porous media and the fluid characterize the model. These extra terms arise in a bound-
ary integral form, facilitating their modeling. The model is closed by assuming the eddy viscosity approx-
imation to be valid, and using simple models to represent the interaction between the walls in the porous
media and the fluid.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of fluid flowing through porous media is re-
quired in a large range of applications in such industries as
chemical, mechanical, nuclear, geological, environmental, petro-
leum, etc. The pore-size’s spectrum is vast and can vary from
the order of Å (ultra-micro-pores) to cms (pebbles, food) or even
larger [1]. Moreover, the conditions encountered in different
applications are broad enough to cover a large range of Reynolds
numbers. For example, Stokes type flows in porous media may
be encountered in ground water flows while turbulent flows
are found in application such as heat exchangers or nuclear reac-
tors. Due to lack of geometric information to model each and
every pore, such systems are difficult to simulate with full geo-
metric details. Despite the fact that it might be possible to de-
scribe some of these systems in an almost exact representation
or a meaningful statistical approximation of the geometry, the
computational effort required to solve the flow field in such
geometries is still out of reach. This motivates the research in
the development of porous media approximation, representing
the system composed of pores by a macroscopic homogenous
one with uniform properties. While both, laminar and turbulent,
flows are important [2–7], number of modeling efforts reported
for turbulent flows in porous media is relatively small.
ll rights reserved.
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An example of a system where porous media approximation
seems to be a suitable approach is the Pebble Bed Nuclear Reactor.
This system has been usually modeled as a homogeneous system
using porous media approximation [2,8]. The operating conditions
in this reactor are characterized by high Reynolds numbers or tur-
bulent flows (Rep � 13,000, based on average pore velocity and
average pore diameter, [8]) together with large changes in the tem-
perature of the cooling gas (DT � 500 �C). These operating condi-
tions make necessary the use of models that account for both
compressibility and turbulence effects.

Different flow regimes have been identified in porous media
flows. Dybbs and Edwards [9] classified four different flow regi-
mens depending on the pore Reynolds number. For example, un-
steady and chaotic flow is encountered for Rep > 300. In porous
media, turbulence based on microscopic, or point-wise quantities,
is not fundamentally different from turbulence in clear flows. Most
approaches to model turbulent flow in porous media are based on
the approaches usually followed to model turbulence in clear flows
[10–13]. Not surprisingly, the most common approach is to extend
the k–e model. Since a region of space occupied by solid and fluid,
in the porous media approximation is represented by a ‘‘homoge-
nized” region, results obtained using such models are relevant only
at the macroscopic scale. Space-fluctuating quantities in addition
to the Reynolds decomposition are then introduced in the macro-
scopic representation [14].

Turbulence (k–e type) models for porous media developed ear-
lier differ from each other because they are based on different def-
initions of the macroscopic turbulence quantities, such as the
turbulent kinetic energy and the dissipation rate [15]. The intro-
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Nomenclature

Ai fluid–solid interface inside the REV
D macroscopic length scale
f model function (macroscopic turbulent dissipation rate

equation)
F Forchheimer coefficient
k macroscopic turbulent kinetic energy (MTKE)
K permeability
lm macroscopic mixing length scale
L megascale
p pore length scale
Ri Darcy–Forchheimer drag force
Re Reynolds number
Rep Reynolds number based on the average pore velocity

and average pore dimension
Re ffiffiffi

K
p Reynolds number based on the fluid averaged velocity

and permeability
U intrinsic fluid velocity
V volume of the REV
Vf fluid volume inside the REV
Vs solid volume inside the REV

Greek symbols
e macroscopic turbulent dissipation rate (MDR)
em turbulent dissipation rate
/ porosity
m kinematic fluid viscosity
mT macroscopic eddy viscosity
q fluid density

Additional notations
hwi V-normalized space average of w
hwif Vf -normalized space average of w
iw space fluctuation of w
w used for time average of w or for Vf -normalized space–

time average of w
w0 time fluctuation of w
w Vf -normalized space–time average of w
wv V-normalized space–time average of w
w00 space–time fluctuation of w

x
r

ξSolid

Fluid

Spherical REV

Fig. 1. Spherical representative elementary volume (REV).
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duction of different macroscopic or space-averaged quantities lead
to different spatial correlations (in addition to the well known time
fluctuations found in turbulent flows in clear media) that need to
be modeled. Unfortunately, relevant microscopic experimental
data is scarce, and hence any comparative analysis of these models
and space-averaged quantities must be based on an evaluation of
the assumptions employed in the development, simplicity of the
model, and, when available on comparison of macroscopic results
predicted by the models with experimental data.

There is no consensus in the research community as to which
approach to model turbulence effects in porous media is most suit-
able (see for instance [16,17]). Lack of agreement on this topic has
opened up space for additional research and new modeling ap-
proaches to develop better understanding of the phenomenon of
turbulence in porous media, or, in other words, to develop better
representation of turbulence within the framework of the porous
media approximation. Therefore, the aim of this work is to develop
an alternative turbulence model for flow in porous media.

The approach followed here in developing a new model for tur-
bulent flow in porous media [18,19] is based on redefining the tur-
bulence quantities, and consequently their transport equations in
the k–e turbulence model, in such a way that time and space fluc-
tuations are not specifically distinguished. These new definitions of
the turbulence quantities lead to a model in which all of the kinetic
energy filtered in the space–time-averaging process is modeled in
its transport equation. Moreover, the resulting model is simple: the
definition leads to a natural construction of the k and e equations,
with the same terms found in the corresponding equations for
clear flow, plus additional (boundary) terms resulting from the
interaction between solid walls of the porous media and the fluid.

Organization of the paper is as follows. An introduction to the
space or volume-averaging approach generally used in modeling
porous media is given. A brief review of existing turbulence models
for flow in porous media is then presented and aspects of these
models that may need further improvement are identified. Seeking
to overcome these aspects, a new set of equations is developed by
treating the average over space- and time fluctuations as a unique
quantity. The new set of equations is closed, thus developing a one-
equation model and a two-equation model to describe turbulent
effects at macroscopic scales in porous media. The second part of
this study – validating the model, contrasting it with existing re-
sults and numerical simulations – is presented in an accompanying
paper (Part II) [20].

2. Macroscopic variables and space-averaged quantities

The notion of space average in porous media is based on the
assumption that although fluid velocities and pressure may be
irregular at the pore scale, locally space-averaged measurements
of these quantities vary smoothly [21]. Macroscopic equations
are commonly obtained by spatially averaging the microscopic
ones over a representative elementary volume (REV) of the porous
medium. A schematic representation of a spherical REV consisting
of a fixed solid phase saturated with a continuous fluid phase is
shown in Fig. 1 (note that the solid phase is fixed, that is, the solid
phase does not change randomly if different ensembles are consid-
ered). The volume of the REV is constant (no space dependence)
and its value is equal to the sum of the fluid and solid volumes in-
side the REV (V = Vf + Vs). For averaging purposes, an auxiliary
coordinate system r = x + n is defined, so that x describes the origin
of each averaging volume and n is the position in a local coordinate
system specific to each averaging volume. In this treatment, the
ideas of Hassanizadeh and Gray [22] and Gray et al. [23] are
followed.

Defining a distribution function cf(r), as one in the fluid phase
and zero in the solid phase,
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cf ðrÞ ¼
1 if r 2 Vf

0 if r 2 Vs

�
; ð1Þ

the cell-average <w>, and the intrinsic phase cell-average <w>f of
any quantity w(r,t) associated with the fluid can be defined respec-
tively as:

hwiðx; tÞ ¼ 1
V

Z
V

wðxþ f; tÞcf ðxþ fÞdV f; hwif ðx; tÞ ¼ 1
/ðxÞ hwiðx; tÞ;

ð2Þ

where the porosity /(x), is defined as:

/ðxÞ ¼ 1
V

Z
V
cf ðxþ fÞdV f ¼

Vf ðxÞ
V

: ð3Þ

Volume-averaging the Navier–Stokes (N–S) equations involves
integration of the space and time derivatives of quantities such
as the velocity field. The volume-averaging theorem (available
elsewhere e.g. [24,25]) is a useful tool in developing the governing
equations for porous media flows, and it will be employed here to-
gether with the space-decomposition concept. As originally de-
fined in Hassanizadeh and Gray [22], a quantity w(r, t) associated
with the fluid may be decomposed in an intrinsic phase cell-aver-
age value <w>f(x, t) plus a local fluctuation in space iw(x, t):

wðr; tÞ ¼ hwif ðx; tÞ þ iwðr; x; tÞ: ð4Þ

Under the length scale constraint given by an appropriate selec-
tion of the REV, it is shown that the intrinsic phase cell-average
quantity is approximately constant inside the REV [21,25]:

hiwi ffi 0; hwif
D Ef

ffi hwif : ð5Þ

And therefore, decomposition in Eq. (5) represents a separation
of length scales where space-averaged quantities are approxi-
mately constant inside the REV.
3. Literature on turbulence models for porous media

Primary motivation behind the use of porous media models is
that it is too expensive, impractical or even impossible to solve
the problem in the real geometry. Therefore, equations have to
be averaged in space to avoid the need to model the real geometry.
Hence, distinction needs to be made between microscopic and
macroscopic turbulence. The first one is turbulence detected by
point-wise probes within pores, and the second one is found by
averaging local turbulence in a REV. Models for the macroscopic
turbulence are therefore developed by time- and space-averaging
the (local) N–S equations. [It is important to mention that though
time-averaging is employed in this study to Reynolds average the
N–S equations [11–13], the authors recognize that time-averaging
may not be appropriate when the flow is not statistically stationary
(e.g. vortex shedding). Time-averaging can however be replaced by
ensemble averaging without impacting the rest of the analysis.]

Unlike turbulence in clear flows, turbulence in porous media,
although of practical and theoretical importance, has not been
studied extensively. Not surprisingly, turbulence modeling in por-
ous media has largely followed the modeling steps for clear flows.
Consequently, the most common model for macroscopic turbu-
lence in literature is the k–e one, adapted to porous media
[10–13]. Note that Nield [17] has discussed turbulence models
for porous media in some detail. The study carried out by Antohe
and Lage [11] starts from the space-averaged N–S equations for
porous media (i.e., including drag forces in the momentum equa-
tion). By time-averaging these equations they developed a k–e
model for turbulence in porous media. Turbulence quantities in
this study are defined by time-averaging of the space-averaged
quantities. Their porous media model under fully developed flow
conditions in one-dimension leads to the trivial solution, or k = 0
and e = 0. Their explanation regarding the trivial solution was that,
‘‘constant level of macroscopic turbulent kinetic energy different
than zero is unlikely to persist in fully developed unidirectional
flow through porous media” [11].

Nakayama and Kuwahara (NK) [12] developed an alternative k–
e macroscopic model for turbulence in porous media. They noted
that small eddies must be modeled first. Therefore, the modeling
process in the NK model starts with the Reynolds averaged equa-
tions, which are averaged over a REV. Nakayama and Kuwahara de-
fined the turbulence quantities by cell-averaging the fluctuating-in-
time quantities. As in the clear flow case, their final set of equations
for k and e contains modeling constants. To determine these con-
stants they performed 2D numerical experiments by solving the
microscopic set of equations (not spatially averaged) for periodic
arrays of squares. The necessary constants for the k and e equations
are then determined by averaging the results in the elementary
volume. Under fully developed flow conditions in one-dimension,
contrary to Antohe and Lage’ model, this porous media model leads
to non-trivial values for k and e.

Pedras and de Lemos [13] addressed the issue of the order of
averaging and showed that the macroscopic N–S equations for ri-
gid porous media are independent of the order of the application
of the space- and time-averaging operators (this is also addressed
in [26]). Independence of the order of averaging essentially means
that the time-averaging operator for rigid porous media commutes
with the space-averaging operator, or:

hwif ðx;tÞ¼ 1
Dt

Z
Dt

1
Vf

Z
Vf

wdV

" #
ds¼ 1

Vf

Z
Vf

1
Dt

Z
Dt

wds
� �

dV¼hwif ðx;tÞ:

ð6Þ

Note that the distribution function, for the sake of simplicity in
the notation, has been omitted in Eq. (6). The concept of double
decomposition was also applied by Pedras and de Lemos, where
any time fluctuating fluid quantity can be decomposed according
to space decomposition as in Eq. (4) (<>,i) or time decomposition
( ,0):

wðr; tÞ ¼ hwif ðx; tÞ þ iwðr; x; tÞ ¼ wðr; tÞ þ w0ðr; tÞ: ð7Þ

Each of these components can be further decomposed. For in-
stance, a space-averaged component may be decomposed in a
space–time averaged quantity plus a time fluctuation of a space-
averaged quantity.

Although not within the classical porous media context, model-
ing of turbulent flows through vegetation and canopies has yielded
a useful description of turbulent flow in porous media [27,28]. To
study flows through plant canopies, Raupach and Shaw [14] fo-
cused on the averaging procedure of local equations in two-dimen-
sions. They identified that in addition to the space-averaged
turbulent kinetic energy (TKE), conservation of kinetic energy re-
quires the modeling of an extra term they called ‘‘dispersive kinetic
energy”. Other researchers have followed the work of Raupach and
Shaw leading to transport equations for different quantities or dif-
ferent averages of the TKE [4,26,29]. Alternately, since the space–
time-averaging of the total kinetic energy of the flow may be writ-
ten as (the factor 1/2 is omitted for clarity):

huiuiif ¼ huiif huiif þ hiui
iuiif ¼ huiif huiif þ huiif

0 huiif
0 þ hiui

iuiif ;
ð8Þ

or

huiuiif ¼ huiuiif þ hu0iu0ii
f ¼ huiif huiif þ hu0iu0ii

f þ hiui
iuiif ; ð9Þ
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some models are based on the transport equations for the second
term on the r.h.s. of Eq. (8) [11,26], while others are based on the
second term on the r.h.s. of Eq. (9) [12,13,29]. The third term on
the r.h.s. of Eq. (9) is identified as the dispersive kinetic energy by
Raupach and Shaw [14]. In the context of porous media, this term
may be called the trace of the hydrodynamic dispersion tensor of
the mean flow or the trace of the momentum dispersion of the
mean flow (where the word ‘‘mean” is employed to describe time
averaged quantities). According to Finnigan [27], this term may be
of the same order as the Reynolds stresses in the lower canopy. In
the context of flows in porous media, this term intuitively seems
to be important for low porosities, when the dispersion of the flow
is high.

Although scarce, experimental data have been measured. Veloc-
ity profiles and turbulence statistics in canopies and vegetation are
reported, for instance, in [27] and in [4], and in general porous media,
in [30]. Moreover, numerical solutions of the macroscopic k–e mod-
els have been compared with these data with acceptable agreement
[4,26,30]. Microscopic numerical simulations of fully periodic REV
have been mainly carried out to calculate model parameters by cal-
culating equilibrium values [12,13,31]. However, accurate micro-
scopic numerical simulations involving the space and time
evolution of quantities of interest are difficult. This is not only be-
cause of the complexity of the geometry but also because of the dif-
ficulty to accurately model turbulent flows near the walls.

In general, turbulence models for porous media flow are devel-
oped to capture the phenomena of macroscopic turbulence by per-
forming a space–time-averaging of the N–S equations. This
procedure leads to body forces in the momentum and k–e equa-
tions, in addition to space–time correlations, that are often ne-
glected. For example, if decomposed using Eqs. (8) and (9), the
last term in both decompositions is usually not modeled. This issue
is addressed in more detail in the following section.

4. Limitations on the modeling of turbulence in porous media

Development of turbulence models for the TKE and dissipation
rate in porous media that is based on averaging the local equations
in space benefits by working with averages of a well known set of
equations and approximations. However, the space-averaging of
non-linear time averaged terms always produces additional terms
involving spatial correlations. In particular, it is shown in Eqs. (8)
and (9) that the space-average of the convective term in the
momentum equation produces correlation terms that need to be
modeled or neglected. That is, because the problem is described
using the space–time average of the velocity (first term on the
r.h.s. of Eqs. (8) and (9), if the macroscopic TKE (MTKE) is defined
as the second term on the r.h.s. of Eqs. (8) and (9), the last term
on the r.h.s. in both cases needs to be neglected in the momentum
equation or included in the modeling of drag forces. Unfortunately,
by choosing to work with Eqs. (8) and (9), not only the extra term
in the momentum equation but additional correlations that appear
in the construction of the space–time-averaging of the turbulence
quantities (k and e) also need to be modeled or neglected. Consider
for instance the space-averaging of the convective term in the
equation for the microscopic TKE (note that k is already a quantity
averaged in time):

hujkif ¼ hujif hkif þ hiuj
ikif : ð10Þ

The last term in Eq. (10) represents the correlation of the spatial
dispersion of the time averaged velocity and the TKE. Terms of this
kind appear in the formulation of the problem irrespective of the
quantity chosen to model the MTKE. Appearance of such extra cor-
relations in the averaging process is discussed in detail by Ayotte
et al. [29]. The fact that these new correlations result mainly due
to the way the problem is defined makes them difficult to model,
and hence undesirable. The extra correlation appearing in Eq.
(10) does not necessarily need to approach to zero in the limit of
clear flows, when the interfacial area between both phases inside
the REV is reduced to zero. Note for instance that in Nakayama
and Kuwahara’s model [12] this term is modeled as a diffusion
term, employing the thermal dispersion tensor and the Lewis num-
ber for the mechanical dispersion. In Pedras and de Lemos’s model
[13] however, this term is modeled, together with the space dis-
persion of the production term, as a source term. These new spatial
correlations that appear in the formulation are further interpreted
from the energetic point of view in the following paragraphs (see
for instance [14]).

Consider the momentum equation for turbulent flows in porous
media. In comparison with the microscopic N–S equations, addi-
tional terms appear in the case of the porous media. These addi-
tional terms are characterized by: (1) two drag forces (form drag
and viscous drag) that result from the interaction between the so-
lid and fluid phases; (2) the flux of the hydrodynamic dispersion of
the mean flow that results from the averaging of the convective
term; and (3) the flux of the space average of the Reynolds stresses.
The momentum equation is:

D
Dt
huiif ¼ �

1
q
@hpif

@xi
þ m

@2huiif

@xj@xj
� @

@xj
hu0iu0ji

f � @

@xj
hiui

iuiif

� 1
qVf

Z
Ai

nipdSþ m
Vf

Z
Ai

nj
@ui

@xj
dS; ð11Þ

where the last three terms in Eq. (11) are in general modeled
employing the Darcy–Forchheimer approximation (see for instance
[6,12]) based on the study carried out by Vafai and Tien [32].

If Eq. (11) is multiplied by the space–time averaged velocity, the
equation for the kinetic energy based on the space–time averaged
velocity is obtained. In addition to the material derivative of this
quantity and a transport term, this equation has several negative
sources (or ‘‘sinks”) of energy as can be seen by inspection of Eq.
(11). These negative sources are (for simplicity the constant poros-
ity case is considered):

Sinks ¼ hu0iu0ji
f @huiif

@xj
þ hiui

iuiif
@huiif

@xj

þ huiif �
1

qVf

Z
Ai

nipdSþ m
Vf

Z
Ai

nj
@ui

@xj
dS

" #
� m

@huiif

@xj

@huiif

@xj
:

ð12Þ

The first three terms on the r.h.s. of Eq. (12) are actually respon-
sible for the transfer of kinetic energy to the filtered motions but
they cannot change the kinetic energy of the flow. In other words,
these three terms must appear as source terms in the equations for
the filtered motions. This can be understood considering the en-
ergy equation for the microscopic flow [33]:

DE
Dt
þr � T ¼ �E; ð13Þ

where the flux of energy and the viscous dissipation are defined as:

Tj ¼
dijuip

q
� vui

@ui

@xj
; E ¼ v @ui

@xj

@ui

@xj
: ð14Þ

Hence, if the energy equation is integrated over a REV of a por-
ous medium, as T is identically zero over the solid–fluid interface,
neither drag forces nor velocity correlations can create/destroy ki-
netic energy. (This point is also discussed by de Lemos and Pedras
in Ref. [16].) Nevertheless, if filtered motions are considered, those
can produce turbulent kinetic energy or dispersive kinetic energy.
In other words, residual motion can be produced by drag forces or
velocity correlations (see for instance [14]). The last term in Eq.
(10) is a clear example of such a term. It can be interpreted as a
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transfer of turbulent kinetic energy into dispersive kinetic energy
and naturally, it must also appear with opposite sign in the trans-
port equation for the dispersive kinetic energy to assure the con-
servation of the kinetic energy.

The first term on the r.h.s. of Eq. (12) or production of TKE
(with a negative sign) is the only term that appears as a positive
source term in the transport equation for the space-averaged tur-
bulent kinetic energy of the flow [12,13]. Thus, the remaining
negative sources in Eq. (12) (with the exception of the dissipa-
tion) must cause the dispersion of the flow in the porous medium
and it is of interest to include them in the modeling process of
the average of the TKE. Therefore, one of the objectives of a
new model for turbulent flows in porous media may then be to
capture the entire energy filtered in the space–time-averaging
process. This motivates the development presented in the follow-
ing section

5. Model

In this study, a new formulation to better represent the phe-
nomenon of turbulence in porous media is developed. Following
an approach similar to that followed to obtain existing turbulence
models, a new two-equation k–e type model is developed. How-
ever, considering the limitations of the existing turbulence mod-
els for flow in porous media (see Section 4), the model being
developed here is expected to have the following characteristics:

� It should model the entire kinetic energy filtered in the averag-
ing process.

� It should not neglect any terms in the development.
� All terms in the final form of the k and e equations, in addition to

the terms similar to those that appear in the corresponding
equations for clear flow, should result from the interaction
between the solid and fluid phases. Hence, such terms should
naturally approach zero in the limit of clear flow.

Such a formulation is expected to be simpler and also contrib-
ute to a better understanding of the problem. In this regard, the
fact that the problem of turbulence in porous media may be de-
scribed by quantities averaged in space and in time, together with
the fact that distinction between space fluctuation and time fluctu-
ation yield additional correlations, suggest the possibility of devel-
oping a model in which distinction is not made between space-
and-time averaged quantities based on the order of averaging/inte-
gration. Hence, in this model, the averaged and fluctuating quanti-
ties are defined as before, but the order of the steps followed in the
averaging procedure of a fluid phase variable is not critical. Any
quantity associated with the fluid is then decomposed as a
space–time averaged quantity plus a fluctuation:

wðr; tÞ ¼ wðx; tÞ þ w00ðr; x; tÞ; ð15Þ

where

wðx; tÞ ¼ 1
Dt

Z
Dt

1
Vf

Z
Vf

wdV

" #
ds ¼ 1

Vf

Z
Vf

1
Dt

Z
Dt

wds
� �

dV ; ð16Þ

and

w ffi w; w00 ffi 0: ð17Þ

Note that in Eqs. (15)–(17), double-bars and double-primes
have been used to describe space–time-averaging and deviations
from this double-averaged quantity, respectively. It is important
to note again that Eq. (15) represents a decomposition of length
scales, with w being approximately constant inside the REV (this
is also expressed in Eq. (17)).
5.1. Natural definition of the macroscopic turbulence kinetic energy (k)

Following the definition of the fluctuation with respect to a
space–time averaged quantity, the average of the convective term
in the momentum equation leads to the following additional term:

hu00i u00i i
f ¼ u00i u00i ; ð18Þ

therefore suggesting an appropriate definition of the macroscopic
turbulence kinetic energy (k) to be:

k ¼
u00j u00j

2
: ð19Þ

This quantity will be called the macroscopic TKE (MTKE). More
accurately, this quantity represents all the energy filtered in the
averaging process.

Different turbulence models for porous media have used differ-
ent definitions of the MTKE. The relationship between them has
been stated for instance in Pedras and de Lemos [15]. The relation
between the quantity introduced here and previous definitions
(kNK for NK’s model, and kM, the definition adopted by Antohe
and Lage [11]) is:

2k ¼ hiui
iuiif þ 2kNK ¼ hiui

iuiif þ hiu0j iu0ji
f þ 2kM : ð20Þ

This equation shows that the MTKE, as it is defined here, in-
cludes the trace of the hydrodynamic dispersion of the mean flow
(also called dispersive kinetic energy [14]). Although this term is
different from zero even when turbulence vanishes (i.e., in lami-
nar flow), it seems appropriate to include it in the definition of
the MTKE. This is not only because the final set of equations
based on this definition of the MTKE shows several desirable
properties but also because the resulting model seeks to capture
all of the kinetic energy filtered in the averaging process. Note
that the MTKE defined here is different from zero in the laminar
case. Due to its similarity with corresponding definitions in por-
ous media models it is still called MTKE as it includes the turbu-
lence behavior at high Re numbers. Moreover, the analysis that
follows is for turbulent flow where the Reynolds averaging is
needed.

The definition of the MTKE introduced here, which is different
from those used by other researches, makes it impossible to use
the space average of the corresponding microscopic equations to
derive the turbulence model. It is however still possible to develop
the transport-diffusion equations for the redefined quantities by
applying the procedure commonly followed in the development
of turbulence models for clear flows. Before proceeding with the
development of the turbulence model, some rules useful in per-
forming the averaging of the equations are summarized here.
5.2. Averaging rules

Applying the theorem of volume-averaging [24,25] to calculate
the average of the gradient of a constant scalar c, shows that for
constant porosity, the area integral of the normal vector is equal
to zero (see for instance [21]):

rcv ¼ 0 ¼ rcv þ 1
V

Z
Ai

cnjdA ¼ cr/þ c
V

Z
Ai

njdA ¼ c
V

Z
Ai

njdS ¼ 0:

ð21Þ

Note that the superscript ‘‘v” is introduced to denote cell-
averaging.

In common turbulence models, velocity fluctuations at the wall
are identically zero because of the no-slip condition. With the def-
inition of velocity fluctuations introduced here (Eq. (15)), this is not
true because the actual velocity at the wall is written in terms of
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the space–time averaged velocity over the REV. However, although
the fluctuations are not zero at the wall, they have a spatially con-
stant value inside the REV. This can be understood from the defini-
tion of space–time fluctuations considering the value of the
velocity over all walls inside a particular REV:

U00i ðx; rwall; tÞ ¼ �uiðx; tÞ: ð22Þ

With the use of these rules, (Eqs. (21) and (22)), it is possible to
show that the following results hold for constant porosity:

@

@xj
u00i ðx; xþ f; tÞv ¼ @

@xj
/ u00i ðx; xþ f; tÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼0

þ 1
VDt

Z
Dt

Z
Ai

nju00i ðx; rwall; sÞdS ¼ 0; ð23Þ

and

@

@xj
uiðx; tÞv ¼

@

@xj
/uiðx; tÞ þ

uiðx; sÞ
V

Z
Ai

njdS|fflfflfflffl{zfflfflfflffl}
¼0

¼ @

@xj
/uiðx; tÞ: ð24Þ
5.3. Macroscopic equations

In the following paragraphs, the averaging of the N–S equations
is carried out by using the theorem of volume-averaging, and rules
stated in Eqs. (21)–(24). The construction of k and e equations is
carried out following the corresponding steps for clear flows (avail-
able elsewhere e.g. [34]). The derivation of the corresponding
equations for the Reynolds stresses and macroscopic turbulent
quantities is not complex. However, it is long and tedious. For this
reason, all intermediate steps are not presented here; only some of
them are highlighted (for a complete description of the derivation
of macroscopic equations, see [19]). For the sake of simplicity in
the notation, from now on a single bar on top means time–space-
averaging (defined in Eqs. (15) and (16)).

In order to keep the derivation simple and to facilitate easy
interpretation of the final results, the medium is considered isotro-
pic with constant porosity, with incompressible and isothermal
flow. The assumption of constant porosity simplifies the develop-
ment of the equations as can be guessed by inspection of Eqs.
(23) and (24), but is not restrictive at all. Under these assumptions,
the resulting space–time averaged equations for an incompressible
fluid flowing through an isotropic, constant porosity medium are:

Mass conservation:

@ui

@xi
¼ 0: ð25Þ

Momentum conservation:

@ui

@t
þ @

@xj
ðuiuj þ u00i u00j Þ ¼ �

1
q
@p
@xi
þ m

@2ui

@xj@xj
� 1

q
1

DtVf

Z
Dt

ds
Z

Ai

nipdS

þ m
DtVf

Z
Dt

ds
Z

Ai

nj
@ui

@xj
dS: ð26Þ

The equation for the fluctuations is found by subtracting the
averaged momentum equation from the momentum equation,

@u00i
@t
þ @

@xj
ðuju00i þ uiu00j þ u00i u00j � u00i u00j Þ ¼ �

1
q
@p00

@xi
þ m

@2u00i
@xj@xj

þ Ri;

ð27Þ

with

Ri ¼
1
q

1
DtVf

Z
Dt

ds
Z

Ai

nipdS� m
DtVf

Z
Dt

ds
Z

Ai

nj
@ui

@xj
dS: ð28Þ
Note that Ri, that also appears in the momentum equation and
results from the interaction between the porous media walls and
the fluid, is a quantity already averaged in time and space, i.e., it
is constant over the microscopic scale and has no time fluctuating
component.

5.3.1. Macroscopic turbulent kinetic energy (k) equation
The equation for the Reynolds stresses is derived by calculating

the quantity:

u00i xEq: ð39Þk þ u00kxEq: ð39Þi: ð29Þ

In the evaluation of Eq. (29), for instance, the viscous term can
be calculated as follows

m u00k
@2u00i
@xj@xj
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@2u00k
@xj@xj

" #
¼m

@

@xj
u00k
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@xj
ðu00i u00kÞdS:

ð30Þ

One of the integrals terms in Eq. (30) is zero for the constant
porosity case. The term involving the drag forces is given by,

u00kRi þ u00i Rk ¼ u00kRi þ u00i Rk ¼ 0: ð31Þ

The final form of the equation for the MTKE is (trace of Eq.
(29)):

@k
@t
þuj

@k
@xj
¼ �u00j u00i
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@xj
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q
ðp00u00j Þþ
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DtVf
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@u00i
@xj

dS

" #
;

ð32Þ

where k, the MTKE, has already been defined in Eq. (19). Eq. (32) is
the same as the corresponding equation in clear flow with two addi-
tional body force terms. One interesting feature to note is that the
body forces appearing in the k-equation are the same as those found
in the momentum equation multiplied by the averaged velocity.
Moreover, this term was a sink term in the equation for the kinetic
energy of the space–time averaged flow (see Eq. (12)) and thus, it
must appear as a source term in the equation for the filtered kinetic
energy.

5.3.2. Macroscopic dissipation rate (e) equation
Note that the macroscopic dissipation rate (MDR, e) has already

been introduced in Eq. (32). It appears from the averaging of the
viscous term (Eq. (30), with indices k = i). In the context of the ap-
proach followed here its natural definition is:

e ¼ m
@u00i
@xj

@u00i
@xj

: ð33Þ

To derive the governing equation for the macroscopic dissipa-
tion rate (e), the equation for the space–time fluctuation (Eq.
(27)) is operated by the following operator,

2m
@u00i
@xk

@

@xk
: ð34Þ

The pressure term in Eq. (27) in the ensuing derivation is aver-
aged as:
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" #
:

ð35Þ

where it is recognized that the divergence of the velocity fluctua-
tions is zero for the constant porosity case. The final form of the
equation for the dissipation rate is:
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This is again the same as the corresponding equation for clear
flows, with three additional boundary terms. Note that the second
term on the r.h.s. of Eq. (36) is known as the diffusion term, the
third term as the destruction term and the fourth term as the pro-
duction term. The symbol em is used to describe the microscopic
dissipation rate (e ¼ em).

6. Model closure

In the set of equations developed here for turbulent flows in
porous media several terms need to be modeled. As in clear flows,
closures for the second and third order one-point correlations
appearing in the turbulence transport equations are needed. These
correlations, that in the present case involve space fluctuations,
and are averaged over space, are modeled assuming a natural
extension from the k–e model for the clear flow case to the macro-
scopic description of flow in porous media. The same approach has
also been followed in literature (e.g. [12,13]) and is largely dictated
by the lack of experimental and/or numerical data for porous med-
ia flows. It is however also recognized that this assumption needs
to be validated. In addition, terms specific to the porous media,
such as the drag force in the momentum equation and the integral
terms that appear in the turbulence transport equations need to be
modeled. The drag term in the momentum equation is generally
modeled using the Darcy–Forchheimer approximation [1,32]. With
this approximation for the drag force, integral terms in the k-equa-
tion can be easily modeled. Integral terms in the e-equation require
further investigation to develop an adequate model. Closure equa-
tions for a one-equation and a two-equation model are described
below.

6.1. One-equation model

Based on the discussion above, a one-equation model for turbu-
lent flow in porous media can be readily developed. The usual pro-
cedure and approximations [35] lead to the following model for
mass, momentum and MTKE conservation:

@ui

@xi
¼ 0; ð37Þ

Dui

Dt
¼ � 1

q
@ðpþ 2=3kÞ

@xi
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@xj
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þ Ri; ð38Þ
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@xj
þ @

@xj
mþ mT

rk

� �
@k
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� �
� e� uiRi; ð39Þ

with:
Ri ¼ �
/m
K

ui �
/2Fffiffiffiffi

K
p

ffiffiffiffiffiffiffiffi
ujuj

q
ui; u00i u00j ¼ �mT

@ui

@xj
þ @uj

@xi

� �
þ 2k

3
dij;

ð40Þ

e ¼ CD
k3=2

lm
and mT ¼ c k1=2lm; ð41Þ

where the first equation in (40) represents the Darcy–Forchheimer
approximation that depends upon the permeability K and Forchhei-
mer constant F [1], and lm is the mixing length scale (CD and c are
model constants, see for instance Pope [33]).
6.2. Two-equation model

Additional closure issues must be addressed to close the two-
equation model. Specifically, models for the boundary terms in
the macroscopic dissipation rate Eq. (36) must be developed. These
boundary terms act as a source term enhancing the dissipation rate

� 2m
qDtVf
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ds
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njemdS

" #
¼ Source term: ð42Þ

The dispersion produced by the solid phase acting on the fluid
phase creates MTKE (walls producing turbulence). MDR is also en-
hanced to dissipate this energy. These boundary integrals can be
estimated from experimental results or numerical simulations that
accurately predict the near wall behavior of the relevant quantities.
However, because such data for porous media are still not readily
available, a simple model based on physical insight is proposed here.

To start, it is useful to consider the model characteristics in one-
dimensional flow in isotropic, constant porosity, porous media.
Contrary to the conditions found in clear flows, where isotropic
turbulence decays away, the interaction between the solid and
the fluid phases in porous media maintains a constant level of
the turbulence quantities and therefore a constant level of the
macroscopic turbulence quantities. This expectation is fulfilled by
the momentum and the macroscopic k-equation. For 1D, fully
developed flow in isotropic media, Eqs. (38) and (39) reduce to:

e ¼ �uiRi ¼
ui

q
@p
@xi

: ð43Þ

Eq. (43) is simply a statement of the conservation of kinetic en-
ergy, meaning that, for constant kinetic energy, the work done by
the pressure must be dissipated by the viscosity.

The Darcy–Forchheimer approximation for the case of turbulent
flows becomes primarily an inertial force and is proportional to the
square of the velocity (see Eq. (40)). This implies that the MDR
scales with the cube of the intrinsic fluid velocity U, while the
square root of the permeability provides the length scale:

e � U3ffiffiffiffi
K
p : ð44Þ

In addition, it is known that the MTKE scales with the square of
the velocity [12,13]. Therefore, inspection of the dissipation equa-
tion for the case under consideration leads to:

e2

k
� U6

K
1

U2 ¼
U4

K
� boundary terms: ð45Þ

Boundary terms must approach zero in the limit of no interfa-
cial area and therefore they may be modeled using the inverse of
the permeability. Although the fluid viscosity appears in the
boundary terms under consideration, it is known that the dissipa-
tion in the limit of zero viscosity remains at a finite value, thus
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implying that the boundary terms may remain also finite in this
limit. For this reason, it seems realistic to model the interfacial
integrals in the dissipation equation in terms of the following set
of variables: k, e, U and K. Because it has been already assumed that
k scales with the square of the velocity, the attention is directed to
e, U and K variables. The following dimensional analysis for the
boundary term,

U4

K
� Fðe;U;KÞ; ð46Þ

coupled with the dual requirement that the MDR appears in the
model and that it, together with the velocity, appear in the numer-
ator, leads to:

boundary terms � eUffiffiffiffi
K
p : ð47Þ

In accordance with the scale analysis given above, the model
chosen for the boundary terms in isotropic media is,

boundary terms ¼ f ð/;KÞ
e ffiffiffiffiffiffiffiffi

ujuj
p ffiffiffiffi

K
p ; ð48Þ

where a function of porosity and permeability, f(/, K), has been
introduced to account for the morphology of the medium. With
the proposed model for the boundary terms, the two-equation
model is now complete.

The additional equations that complete the set described in Eqs.
(37)–(40) are:
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mT ¼ Cl
k2

e
: ð50Þ

To gain some physical insight from the final set of equations, it
is again useful to consider their behavior for 1D, fully developed
flow in isotropic constant porosity porous media. In this case, the
steady-state values of the turbulence quantities are,

e ¼ /m
K
juj2 þ /2Fffiffiffiffi

K
p juj3; ð51Þ

k ¼ Ce2

f ð/;KÞ
/mffiffiffiffi

K
p juj þ /2Fjuj2
� �

: ð52Þ

Here, the Darcy (linear) term in the Darcy–Forchheimer approx-
imations has been purposely retained in the equations. As the aver-
aging process is still valid for laminar flows and the Darcy term
captures the flow behavior in this regime, it is desirable to retain
this term to study laminar flow. However, it is important to
remember that the modeling of the boundary terms in the dissipa-
tion equation is based on inertial flow considerations more than
Stokes type flows. Additional assumptions based on turbulent flow
considerations, regarding the turbulent mixing length scale, will be
introduced later.

Recalling the function f(/, K), it is noted that based on the fact
that MTKE must go to zero in the limit of clear flows (when /
? 1 and K ?1), Eq. (52) imposes a mathematical condition on
the asymptotic behavior of the function. That is, f(/, K) must tend
to infinity as the porosity approaches 1 and the permeability goes
to infinity. In addition, the representation of integral terms in Eq.
(48) implies that f(/, K) must increase as / ? 1 and K ?1 slower
than the square root of permeability to ensure that the model pro-
posed for the integral terms vanishes in the limit of clear flows.
Although this function needs to be determined from microscopic
calculations in representative cells of an infinite periodic porous
media, it is of interest to note that one-equation and two-equation
models lead to the same result for the steady-state value of k if f(/,
K) is defined as:

f ð/;K;Re ffiffiffiKp Þ ¼ Ce2C2=3
D

/
Re ffiffiffiKp

K

l2
m

þ /2F
K

l2
m

 !1=3

; ð53Þ

where, in this case, f(/, K) may be considered also to be a function of
a local Reynolds number that results from the Darcy term in the
Darcy–Forchheimer approximation. This definition of f fulfills the
required physical conditions, if the mixing length scale remains fi-
nite, in the limit of clear flows.

7. Discussion and summary

A new k–e model to describe the phenomenon of turbulence in
porous media has been developed. The space–time fluctuation in
this model is treated as a unique quantity and a transport-diffusion
equation has been derived here for the entire kinetic energy filtered
in the averaging process of the momentum equation. A simple clo-
sure model was assumed to complete the one- and two-equation
models. For a given porous medium, the one-equation model is
closed once a mixing length scale and model constants are defined
(Eqs. (37)–(41)). The two-equation model needs additional infor-
mation such as the function f (Eq. (49)) or equivalently, the fully
developed value of the MTKE (Eq. (52)), for closure.

The assumption of constant porosity may seem restrictive.
However, the steps followed here to develop the equations do
not restrict the development to this limiting case. The non-uniform
porosity case would lead to additional boundary terms as can be
guessed by inspection of Eqs. (23) and (24). Since information
regarding the non-uniform porosity model is usually lacking, mod-
eling with the additional complexity due to a variable porosity is
not warranted at this stage.

An important aspect in turbulence modeling is the treatment of
the transfer of kinetic energy between the space-averaged kinetic
energy and the residual energy [33]. The fact that space and time
fluctuations in the model proposed here are not explicitly distin-
guished allows the development of a transport equation for the en-
tire filtered energy. This also eliminates space correlations of time
averaged values and time correlations of space-averaged values
from the final set of equations. Moreover, the body force appearing
in the k-equation results naturally from the averaging process
defining macroscopic dissipation at equilibrium as the product of
the pressure gradient and velocity.

In comparison with the clear flow case, the interaction between
walls and the fluid in porous media produces additional terms (or
area integral terms) in the final set of equations. Models proposed
for these terms include as a factor, the inverse of permeability to
ensure that they vanish as the surface area of the solid tends to
zero. However, terms that arise from the space-averaging of non-
linear terms (see Section 4, Eq. (10)) may not vanish in the limit
of clear flows and therefore they may not be modeled using the in-
verse of permeability as a factor. In this regard, it is of interest to
consider the form of the averaged equations when porosity ap-
proaches one. Not only in the model proposed here, but also in
models that average the microscopic TKE, the averaged equations
do not need to recover the clear flow equations in the limit of
porosity approaching 1. Clear flow equations are recovered in the
limit of zero REV’s volume.

The dissipation rate equation in porous media has been devel-
oped, for instance, for the space average of the local dissipation
[13,29] or proposed as an empirical transport-diffusion equation
that is obtained, in analogy with clear flows, by rescaling the equa-
tion for the MTKE with e/k [26]. This leads to several new space–
time correlations that need to be modeled. However, the equation
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for the macroscopic dissipation rate derived here following a rather
systematic approach leads to correlations already found in the cor-
responding clear flow equation. The only difference between the
porous media and the corresponding clear flow equations are the
integral terms in the porous media equation that vanish in the lim-
it of clear flows. These boundary terms need to be studied in detail
by means of experiments or direct numerical simulations of the N–
S equations. To close the set of equations an empirical correlation
based on dimensional analysis and consistent with the TKE equa-
tion is proposed.

The model presented in this study is based on a new defini-
tion for macroscopic turbulence quantities. These entities need
to be analyzed and compared with existing definitions under dif-
ferent flow conditions and different porosities to understand
their physical significance. To validate the model developed here
it is solved numerically and the results are presented in a com-
panion paper [20]. Results are compared with those available in
literature.
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